Surfaces of higher genus than the sphere can always be cut open into a planar polygon with 2n edges that are to be identified (i.e., paired up and glued back together when the time comes to reassemble the surface.) If the hamiltonian circuit never crosses the polygon, everything will be planar except, possibly, the few bonds that cross the polygon. These bonds may need some supplementary coding to be properly reconnected.
When the polygon in question is a square, the only two orientable surfaces it can represent are the sphere and the torus.
For the sphere, the polygon-crossing bonds reconnect in a way that, as one would expect, can be diagrammed on the plane without crossing lines.
Therefore these polygon-crossing bonds are not in any way special and can be undip coded in the usual way along with all the other bonds that do not cross the polygon. Notice that, given the orientation of the hamiltonian circuit indicated all these bonds will be coded by u and d (there will be other bonds coded by u and d that do not cross the polygon, but no distinction need to be made.)
For the torus, the polygon-crossing bonds re-connect in a way that does not permit drawing their re-connection on the plane without crossing lines. However, as evidenced by the drawing below, the re-connection for either of the two cuts can be drawn on the plane, just not both at the same time.
Polygonal model of a torus. Either class of bonds, but not both, can be drawn in the plane without crossings. As drawn, only the pink bonds need special coding. |
We could code the the torus above by introducing two new characters for bond connections we cannot draw on the plane. For example, we could use a pink u and a pink d. Pink u's and d's, connect up with each other in the same planar way, they are just, so to speak, drawn on a separate page.
u and d to code this surface. These two additional characters also suffice for any higher genus orientable surface that has been dissected in the canonical way.
Actually, we do not always have to have a canonical dissection in order to get by with just two additional characters. It suffices to have a dissection that partitions the polygon-crossing edges into two sets, each of which can be described by a parenthesis word. For instance, in a canonical polygon, the parenthesis word for either set happens to be ()()()..., but for our purposes any parenthesis word would serve.
No comments:
Post a Comment